
Incremental learning with self-organizing maps

Alexander Gepperth
University of Applied Sciences Fulda

Department of Applied Computer Science
Leipzigerstr. 123, 36036 Fulda, Germany
Email: alexander.gepperth@cs.hs-fulda.de

Cem Karaoguz
ENSTA ParisTech

UIIS Lab
Blvd des Marechaux 128, 91762 Palaiseau, France

Email: cem.karaoguz@ensta.fr

Abstract—We present a novel use for self-organizing maps
(SOMs) as an essential building block for incremental learning
algorithms. SOMs are very well suited for this purpose because
they are inherently online learning algorithms, because their
weight updates are localized around the best-matching unit,
which inherently protects them against catastrophic forgetting,
and last but not least because they have fixed model complexity
limiting execution time and memory requirements for process-
ing streaming data. However, in order to perform incremental
learning which is usually supervised in nature, SOMs need
to be complemented by a readout layer as well as a self-
referential control mechanism for prototype updates in order
to be protected against negative consequences of concept drift.
We present the PROPRE architecture which implements these
functions, thus realizing incremental learning with SOMs in
very high-dimensional data domains, and show its capacity for
incremental learning on several known and new classification
problems. In particular, we discuss the required control of SOM
parameters in detail and validate our choices by experimental
results.

I. INTRODUCTION

This article is in the context of research on incremental
learning algorithms, and elucidates how self-organizing maps
can be an integral and necessary part of such algorithms.

Incremental learning [1] is a form of learning that is quite
different from the more well-established algorithms like neural
networks (including deep learning), support vector machines
or bagged decision trees, as it does not impose a separation of
training and test phases. Incremental models can be updated
with new samples at any time, and thus re-trained as often
as desired which is not (or not fully) possible with the
aforementioned models.

The precise definition of incremental learning is not a
subject of universal agreement. Although attempts at formal
definition ([2], [1]) conflict in minor points, they seem to agree
that incremental learning algorithms

• take their training samples one by one, a capacity
which shall be termed here online learning)

• do not know the total number of samples in advance

• can deal with changes in the statistics underlying
sample generation

When one thinks about it, the last two properties are really
equivalent: any finite dataset that is split into two parts will
almost surely exhibit different statistics in each part (see [3]

front back

leftright

background

pedestrians

Fig. 1. Representative samples from the real-world pedestrian detection
and classification datasets used in this study, in addition to MNIST. There
are two classification problems: pose classification into the four classes
left/right/front/back (boxes with green borders), and pedestrian detection,
i.e. classification into a pedestrian and a background class (boxes with red
borders).

on how this fact affects cross-validation methods in machine
learning). Since data in incremental learning scenarios can
always be divided into past (already seen) and future (as yet
unseen) samples, statistics in those two parts will in general be
different. For algorithms not suited for incremental learning,
this leads to the so-called catastrophic forgetting effect [4], [5],
[6], [7], [8] which was mainly coined for supervised learning
with neural networks.

Generally, changes in data statistics as encountered in in-
cremental learning are denoted somewhat generally as concept
drift [9], [10], which can be gradual or abrupt. In the latter
case one often uses the term concept shift. When data statistics
do not change globally but only in a specific region of data
space, sometimes the term local concept drift is used [10]. A
prominent example is the addition of a new, visually dissimilar
class to a classification problem, which is the kind of concept
drift mainly treated in this article. Local concept drift in
particular is an important use case for incremental learning
algorithms as there is, a priori, no reason why new statistics in
localized regions of data space should disrupt learned models
elsewhere. Another and much more problematic case is local
concept drift/shift with conflict (also treated here), for example
when a new but similar class appears in the data: this will in
any event have an impact on classification performance until
the model can be locally re-adapted to separate the old from
the new class.978-1-5090-6638-4/17/$31.00 c©2017 European Union

A. Focus and contributions of this article

This article makes a strong point for self-organizing maps
(SOMs) as an essential building for incremental learning. This
is mainly due to the following properties of SOMs:

• online learning: traditionally, SOMs are fed their train-
ing samples one by one although batch SOM models
exist. While the justification of this online learning
rule remains unsatisfactory in the original formulation,
there are modified SOM models that explain it as a
stochastic gradient descent on an energy function[11].

• robustness against changing statistics: all SOM-like
models update prototypes exclusively in the vicinity of
the best-matching unit (BMU). Due to the topological
organization of prototypes, concept drift in one part
of data space will not affect prototypes for another,
distant part of data space, thus avoiding catastrophic
forgetting (see Sec. III-D).

• constant model complexity: except for growing neural
gas models, the model complexity of SOMs is fixed
by the number of units. For incremental learning, this
is an advantage as it is often conducted under real-
world/real-time conditions where guaranteed time and
memory complexity is of high importance (e.g., for
treating streaming data or in robotics applications).
Comparable incremental learning algorithms es listed
in Sec. I-C often exhibit variable model complexity
which can effectively render them unusable depending
on the chosen application.

However, the SOM model is not directly usable for incremental
learning as it is not a supervised algorithm, for one thing. In
addition, there are several additional mechanisms that need to
be implemented before incremental learning becomes feasible
in practice:

• supervised read-out layer for SOM

• a SOM-based concept drift detection mechanism

• protection of the SOM against sampling bias by se-
lectively controlling prototype updates

• adaptive suppression of sub-leading SOM activity to
protect read-out layer against concept drift

• adaptive control of SOM parameters to maintain topo-
logical ordering in the face of concept drift

These mechanisms have been realized in the PROPRE
(”PROjection-PREdiction”) architecture [12], [13] which was
shown to be capable of incremental learning in high-
dimensional (> 1000 dimensions) spaces due to its internal
SOM layer. In this article, these mechanisms are described in
detail, and an in-depth analysis of their behavior in a typical
incremental learning scenario is conducted, namely the abrupt
addition/presentation of a new, previously unseen class. In this
way, best practices are identified and solid justifications are
obtained for mechanisms that can make SOMs an integral
building block of incremental learning algorithms. We pay
particular attention to validate our results on a representative
set of real-world learning problems.

SOM

projection

Linear

regression

pattern
vectors (I)

topology-preserving
representation (H)

category
vector (P)

ground-truth
vector (T)

performance
evaluationgating

signalsquality
evaluation

Fig. 2. Block diagram of the PROPRE architecture for incremental learning.

SOM

projection

Linear regr.

topology-preserving
representation (H)

category
vector (P)

ground-truth
vector (T)

performance
evaluationGating

signalsquality
evaluation

2) weak
activity

1) concept
shift

4) empty
predicton

5) ambiguous
classification6) activate

learning

3) no LR
adaptation

Fig. 3. Sequence of events as a reaction to concept shift in the form of a
new visual class, to be regarded together with Fig. 2.

B. The PROPRE architecture for incremental learning

The PROPRE architecture for incremental supervised
learning was proposed in [12], [13] It combines generative,
SOM-based learning of an internal representation with dis-
criminative read-out of classification or regression outputs,
see Fig. 2. From the latter, a task-related error signal is
derived which adapts the internal SOM representation in case
of mismatch or classification ambiguity. This ensures that
prototype density increases in regions of the input space that
are difficult to classify, or in which concept drift is occurring.
Prototype adaptation is stably self-terminating when no more
errors are made, or when concept drift subsides.

As a typical SOM model, the internal representation is
topologically organized, and prototype adaptation modifies
weights only locally. It is above all this property that allows
for incremental learning of prototypes: adaptation of a single
prototype changes just its neighbours, which are close in data
space as ensured by the topological organization of selectivi-
ties. A read-out mechanism between hidden and output layer
maps local input space regions (i.e., sets of prototypes) to class
memberships using simple linear regression learning based on
SOM input-prototype distances that have been converted into
bounded activation values. The mapping from hidden to output
layer is adapted only when there is sufficient activation in
the internal representation. If this is not the case, e.g., when
concept drift is occurring, adaptation is suspended, because
random weak activations due to unknown inputs can severely
disrupt existing read-out weights.

C. Overview of other incremental learning algorithms

There are a number of approaches for incremental learning
with support vector machines (see [14] for an overview), but

in the light of the given definitions, these approaches are closer
to online learning and will run into trouble under concept
drift. Furthermore, there are ensemble learning algorithms [15],
[14] that achieve incremental learning simply by training new
classifiers for new batches of data, and combining all existing
classifiers for decision making. While this indeed achieves
incremental learning under some conditions, it makes the
implicit hypothesis that concept drift coincides with new data
batches, whereas a detection of concept drift is not addressed
at all. As the problem of catastrophic forgetting was first
remarked for multilayer perceptron (MLP) models [4], [5], it
is hardly surprising that there is significant work on the subject
of how catastrophic forgetting could be avoided[16], [17], [18],
[19], [20], [21], [22], [23] although none of these proposals
is completely free of problems and of limitations. To perform
incremental learning as defined earlier in this section, most
modern approaches perform an explicit local partitioning of the
input space and train a separate classification/regression model
for each partition [24], [25], [26], [27], [28]. The manner of
performing this partitioning is very diverse, ranging from kd-
trees [28] to genetic algorithms [27] and adaptive Gaussian
receptive fields [24]. Equally, the choice of local models varies
between linear models [24], Gaussian mixture regression [28]
or Gaussian Processes [25]. Since this article is concerned
with high-dimensional perceptual problems, it can be stated
for all cited approaches that it is really the partitioning of the
input space that is costly in terms of memory. Most notably,
covariance matrices used in [24] are quadratic in the number
of input dimensions which makes their use prohibitive for high
data dimensionalities.

II. METHODS

PROPRE is as a three-layer neural network architecture
depicted in Figure 2. The size of the input layer is given
by the dimension of the data vectors, whereas the size of
the output layer is determined by the number of outputs a
particular task requires. In this article we are only dealing
with classification tasks with population-coded class labels,
therefore the size of the output layer corresponds to the number
of classes in a task. A free parameter is the size of the hidden
layer H which we denote by nH × nH . To train the hidden
layer H, we use a SOM-based learning scheme (with slight
modifications) which is described in Section II-A, whereas the
readout from hidden to output layer O is performed by linear
regression (LR) explained in Section II-B. A particular point
are the modulation influences within the architecture, which
control and restrict learning in hidden and output layers, see
Section II-C. The reaction of PROPRE to the kind of concept
drift/shift considered in this article is shown in Fig. 3.

We denote a neural activity vector in a 2D representation X
by zX(~y, t), and weight matrices for SOM and LR, represented
by their line vectors attached to target position y = (a, b), by
wSOM
~y . For reasons of readability, we often skip the dependen-

cies on space and time and include them only where ambiguity
would otherwise occur. Thus we write zX instead of zX(~y, t)
and wSOM instead of wSOM

~y (t).

A. Activity generation and prototype training in the hidden
layer

The hidden layer H is not intended to reduce the dimen-
sionality of the input but rather to re-encode it in a way that
enables incremental learning. Therefore, instead of reducing
the output of the hidden layer to the best-matching unit (as
it is usually done for the SOM model), we the calculate
(graded) activations of all hidden layer units for performing
the following linear regression. Hidden layer activations zH
are meant to measure a sparse similarity between input and the
prototype associated to a particular unit and are normalized
in the [0, 1] interval. They are obtained by first passing all
input-prototype distances z̄H through a Gaussian function with
standard deviation κ, and then applying a transfer function
TF(·) that sparsifies these similarities. Here, there is a technical
point to be observed: since there is no way of knowing a priori
the typical input-prototype distances, κ must be adapted to the
data during the learning process, making it a dynamic, time-
dependent quantity:κ ≡ κ(t).

In order not to trigger the adaptation of too many linear
regression weights, the transfer function thresholds these sim-
ilarities, thus ensuring that only those units whose prototypes
are very close to the input are active and take part in linear
regression training.

Prototype adaptation is performed using the conventional
SOM update step except that it takes into account a control
signal λ(t) coming from the output level of the hierarchy,
which will be described in Section II-C. In precise terms, the
equations for activity generation in the hidden layer in response
to input activity zI are as follows:

z̄H(~y) = ||wSOM
~y − zI || (1)

z̃H = gκ
(
z̄H
)

(2)

zH = TFθ,p
(
z̃H
)

(3)

The adaptation steps for the weights and the distance metric
κ(t) are as follows:

wSOM
~y (t+ 1) = wSOM

~y + λ(t)εSOMgσ(||~y − ~y∗||)(zI − wSOM
~y)

(4)
κ(t+ 1) = (1− τ) κ(t) + τ max~y z̄H(~y) (5)

where gσ(x) is a zero-mean Gaussian function with standard
deviation σ, and ~y∗ denotes the position of the best-matching
unit (i.e., the one with the highest similarity-to-input) in H .
In accordance with standard SOM training practices, the SOM
learning rate and radius, εSOM and σ, are maintained at ε0, σ0

for t < T1 and are exponentially decreased afterwards in
order to attain their long-term values ε∞, σ∞ at t = Tconv.
TF represents a monotonous non-linear transfer function, TF :
[0, 1] → [0, 1] which we model as follows with the goal
of maintaining the BMU value unchanged while non-linearly
suppressing smaller values:

TFθ,p(z̃H) =

{
T̃Fp(z̃H) if T̃F(z̃H) > θ

0 otherwise (6)

where

T̃Fp(z̃H) =

(
z̃H
)p

max~y (z̃H(~y, t))
p−1 (7)

range meaning
∈ [−1,−0.5] certain, incorrect
∈ [−0.5,−0.1] uncertain, incorrect
∈ [0.1, 0.5] uncertain, correct
∈ [0.5, 1] certain, correct

TABLE I. SIGNIFICANCE OF VARIOUS VALUE RANGES OF THE
CONFIDENCE MEASURE m(zP).

B. Decision making and learning in the output layer

Generation of output layer activities is performed by a
simple linear transformation of thresholded hidden layer activ-
ities zH , using the linear regression weights wLR. Learning is
subsequently modifying these weights to optimize the mapping
of hidden layer activities zH to the target representation zT

containing the ”true” class of a sample.

zP (~y) = wLR
~y · zH (8)

wLR
~y (t+ 1) = wLR

~y (t) + 2
εLRzH

(nH)2

(
zP (~y)− zT (~y)

)
(9)

In contrast to the hidden layer learning rate, the learning rate
of linear regression, εLR remains constant at all times although
we normalize it by the size of the hidden layer, so that it need
not be changed by hand when the hidden layer size is changed
between experimental runs.

C. Feedback control of learning and detection of novelty

Hidden layer and output layer neurons do not adapt their
weights all the time, only when it is deemed appropriate. Here,
there are two distinct cases to be distinguished: first, when
the hidden layer has low overall activity, maybe because the
input belongs to a newly added class, then linear regression
should not adapt its weights because hidden layer activity is
probably not meaningful and it will impair performance for
already represented classes. This is achieved automatically by
thresholding hidden layer activities in the transfer function
TFθ,p by θ as specified in eqn. (3), leading to zero activity
if activity is too low. In this case, linear regression weights
will not be updated as this requires non-zero activities in the
hidden layer H. Secondly, hidden layer weights wSOM will only
be updated when the current estimate of class membership, i.e.
the output layer activities zP , is either uncertain or wrong. To
measure uncertainty, we first define an uncertainty measure
based on the output layer activities, whose basic idea is that
a certain estimate of class membership has a clear activity
maximum, so a good measure is just to use the bounded
difference between first and second maximum:

u(zP) = max~y zP −max2~y zP (10)

This measure, u(zP), can be combined with the fact whether
the activity maximum of zP is in the right place, i.e., in
accordance with ground-truth information zT :

m(zP , zT) =

{
u(zP), if arg max~yz

P = arg max~yz
T

−u(zP), otherwise
(11)

Finally, we obtain the modulation measure λ(t) that decides
whether hidden layer weights should be trained, by threshold-
ing the confidence measure m(zP , zT):

λ(t) =

{
0, m(zP , zT) > θm
1, otherwise

(12)

 initialization incr. learning

global SOM
ordering

0 T1

start of SOM
modulation

P-1 classes class PP-1 classes

Tincr Tconv iterations

 training

incr. learning
mode

Fig. 4. Type of incremental learning problems considered in this article. For
a classification problem with P classes, the PROPRE architecture is trained
with P − 1 classes until iteration Tincr. From this time onward, only the left-
out class is presented to the architecture, and performance is subsequently
evaluated.

Table I gives an overview over the intuitive meaning of various
values of the confidence measure m. By thresholding m(zP)
we thus allow hidden layer weights to be trained only when
the current class estimate is of less-than-perfect quality, either
outright incorrect (for θm ≤ 0) or correct but of significant
uncertainty (for θm > 0).

III. EXPERIMENTS

In this section, we will first of all describe the datasets that
we are going to use to conduct all experiments in this article.
Subsequently, we will give detailed parameter settings for the
two incremental learning algorithms that we will employ for
experiments. Afterwards, experiments will be conducted for
each of the point indicated in Sec. I-A: initially, Sec. III-F will
show the basic feasibility of a readout layer for SOM based on
simple linear regression. In Sec. III-G, it will be demonstrated
that the SOM layer of the PROPRE architecture can detect
concept drift/shift by comparing the activation of the BMU to
long-term average values. In Sec. III-H, it will be demonstrated
that concept drift detection is absolutely necessary for SOM-
based incremental learning, as diffuse SOM activations due
to concept drift would otherwise break the readout layer’s
performance.

We wish so emphasize that this article investigates in-
cremental learning faced with a particular, very application-
relevant type of concept drift: the addition of a new class of
samples starting at a certain time Tincr, see Fig. 4.

A. Datasets

In this article, we use three different classification bench-
marks1 in order to investigate incremental learning with SOMs.
First of all, we make use of the MNIST dataset of hand-
written digits [29] which is a standard benchmark in ma-
chine learning. In addition, we use two datasets obtained
from a visual pedestrian classification benchmark, the Daimler
Pedestrian Detection Benchmark[30]. The first dataset if about
pedestrian detection, i.e., the distinction of pedestrian images
from background/non-pedestrian samples, whereas the second
task is about pedestrian pose classification, assigning one of
the four classes ”front/back/left/right” to pedestrian samples
(no background samples in this task) according to their visually
perceived orientation. Please see Fig. 1 for a visualization of
the pedestrian-related tasks, whereas we refer to [29] for an
in-depth description of the MNIST benchmark.

1Available under www.gepperth.net/alexander/downloads/dataWSOM.tar.gz

TABLE II. IMPORTANT PROPERTIES OF THE THREE DATASETS USED IN
THIS ARTICLE.

Dataset #train # test dimensions preprocessing # classes
MNIST 60.000 10.000 28x28=784 raw 10

Ped.Pose 12.684 2.516 756 HOG 4
Ped.Det. 10.000 19.148 756 HOG 2

The MNIST dataset is a relatively ”clean” problem (very
little noise and overall variance) where excellent recognition
rates can be achieved even on the raw image data. In contrast,
the two pedestrian datasets are difficult real-world problems
which require a more sophisticated preprocessing in order to be
solved with any degree of precision. The applied preprocessing
method is termed HOG (histogram of oriented gradients, see
[31]) and represents a standard method in real-world visual
object recognition. Using the terms of [31], the parameters of
the HOG transform applied to cropped images downsampled
to a size of 32 × 64 are: block size 16 × 16, cell size 8 × 8,
2 × 2 cells per block, 9 orientations bins and normalization
enabled.

Important global facts about all three datasets are given in
Tab. II.

B. Evaluation measures

In the experiments presented later in this section, we
present several different measures to evaluate and visualize
results. For comparing the topological ordering in a given SOM
layer, we resort to the so-called topographic error etop [32]

e(t) ≡
{

1 if ~y∗ is adjacent to ~y∗2
0 else

etop ≡ 1−
〈
e(t)

〉
t
, (13)

where ~y∗2 is the position of the unit with the second-highest
activation after the BMU which resides at ~y∗.

Lastly, we consider to classification rate E in order to
assess the success of supervised learning in assigning the
proper classes to input vectors. Since we assume that the
ground-truth vector T and therefore the output category vector
P (see Fig. 2) are population-coded, the classification rate is
defined as

E(t) ≡
{

1 if arg maxiz
P
i = arg maxiz

T
i

0 else

E =
〈
E(t)

〉
t

(14)

C. Parametrization of algorithms and organization of experi-
ments

All PROPRE experiments begin with a convergence phase
where SOM parameters vary over time (high constant values
until iteration T1 and exponential decrease to asymptotic
values until Tconv. Subsequently, normal PROPRE training is
conducted with modulatory influenced turned on until Tincr.
Subsequently, either performance is evaluated or an incremen-
tal learning step is conducted where typically a new, previously
unseen class is presented to the network. The incremental
learning step, presenting exclusively examples of a previously
unseen class, lasts for I iterations. In order to maintain a
topological SOM organization, these new samples must be

TABLE III. PARAMETERS USED IN PROPRE EXPERIMENTS. PLEASE
REFER TO SEC. II FOR AN EXPLANATION OF THE SYMBOLS.

nH 30 θ 0.7 p 10
τ 0.005 ε0 0.1 σ0 0.3nH

T1 10000 Tconv 80000 ε∞ 0.001
σ∞ 0.01 εLR 0.1 θm 0.7
Tincr 600000 ∆Tincr 15000

smoothly integrated into the existing map, which is ensured by
increasing the neighbourhood radius of SOM learning to σincr
at t = Tincr, and exponentially reducing it to its asymptotic
value until t = Tincr + ∆Tincr. The adaptable parameters of the
PROPRE algorithm are given in Tab. III. All experiments will
use these values unless explicitly stated otherwise.

D. Preliminary experiment: basic feasibility of SOMs for in-
cremental learning

In this experiment, we wish to demonstrate the basic feature
of the SOM model that makes it an excellent choice for
incremental learning: its purely local update behavior. Using
the parameter settings from Sec. III-C but using a hidden
layer size of nH = 10 and an asymptotic neighbourhood
radius of σ∞ = 1.0, we train the PROPRE architecture on
the MNIST dataset where the class ”0” has been removed
from the training data. At t = Tincr, we introduce strong
concept drift by presenting only the hitherto excluded class
0 and the evolution of SOM prototypes is observed at various
times t > Tincr, here 500, 1500, 5000 and 9000. In order to
obtain a purely SOM-like behavior without any control of
updating, we set the predictability threshold to θm = 1.1,
which results in a guaranteed SOM update for every sample
as in the original SOM algorithm, see eqn. (12). The learning
rate for the linear read-out layer is set to η = 10−1. The SOM
activation threshold is kept at θ = 0.7 although it is irrelevant
here as we wish to investigate the behavior of the SOM only.
The results can be observed in Fig. 5.

E. Protecting the SOM layer against sampling bias

As the experiments of the last section (see Fig. 5) show,
SOM prototype adaptation in the hidden layer H is strongly
impacted by the time this class is presented. The longer it
is presented, the more prototypes lean towards the new class,
and consequently prototypes describing old classes are forgot-
ten. This is a variation of the sampling bias problem often
encountered in machine learning: the frequency of classes
during training is not correlated at all to their frequency
during application. In our case, this is a highly undesirable
effect as it is not at all the time of presenting a new class
that should control forgetting, but classification performance!
PROPRE therefore adapts prototypes only as long as classi-
fication performance for the new class, as measured by the
generalized confidence measure of eqn. (11), is unsatisfactory.
This effectively protects the SOM layer and makes prototype
adaptation totally independent of the time of presentation. To
demonstrate this, we repeat the experiments of the previous
section but this time using a parameter of θm = 0.7, meaning
that once the generalized correctness measure for a sample
exceeds 0.7, no SOM adaptation is carried out any longer. By
varying this parameter one can effectively control forgetting
in the SOM layer H . The results are shown in Fig. 6.

Fig. 5. Demonstration of the purely local update behavior of the SOM model, shown exemplarily for the MNIST handwritten digit dataset. Shown by color
coding in each diagram is the euclidean distance between prototypes at times t and Tincr, for each prototype with index x/y. For better understanding, the
color-coded distance map has been augmented by linear interpolation, and a visualization of prototypes at time t > Tincr is overlaid over each distance image.
As t increases, the insertion of the new class affects more of the SOM prototypes but it can be observed that the change is gradual and strictly local.

Fig. 6. Protecting the SOM layer against sampling bias, shown exemplarily for the MNIST handwritten digit dataset. Color coding in each diagram indicates the
euclidean distance between prototypes at times t and Tincr, for each prototype with index x/y. For better understanding, the color-coded distance map has been
augmented by linear interpolation, and a visualization of prototypes at time t > Tincr is overlaid over each distance image. As t increases, SOM prototypes are
updated and subsequently protected against unnecessary adaptation as new class is sufficiently well recognized by the read-out mechanism. This figure should
be compared to Fig. 5 where SOM protection is disabled.

F. Supervised read-out layer for SOM

TABLE IV. CLASSIFICATION ACCURACY E AS A FUNCTION OF
HIDDEN LAYER SIZE nH . AS MAY BE EXPECTED, INCREASING H

INCREASES PERFORMANCE.

Task E10x10 E30x30 E50x50

MNIST 91.3% 96.7% 98.2%
PedDetect 95.1% 97.0 % 99.2%
PedPoses 70.2% 73.8% 74.5%

This experiment is conducted with the settings of Sec.III-C
but only until Tincr, that is, without incremental learning. We
simply wish to establish that a read-out by simple linear
regression is indeed possible, and that satisfying results can
be achieved in this way. No comparison to deep learning
results on MNIST or other datasets is intended, although the
classification rates obtained here (see Tab. IV) are close to
state-of-the-art results. We find that σ∞ has a strong impact
on classification accuracy and should be chosen very small.
We also find that keeping θ = 0 during training increases
classification accuracy moderately. To a much lesser extent, the
learning rates εLR and ε∞ have an impact in final classification
accuracy, although this is very task-dependent.

G. Concept drift detection

For this experiment, we ask the question whether the SOM
layer is able to detect the presence of a new class in the training
data, or, more precisely, the percentage of samples from this
class that can be recognized as ”outliers”. Using the setting
from Sec. III-C except for a hidden layer size of nH = 10,
we train the architecture on all three datasets described in
Sec. III-A until t = Tincr. For each dataset, one class (class

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

%
 o

f e
xc

lu
de

d
ou

tli
er

s

% of kept inliers

MNIST
PedDet

PedPoses

Fig. 7. Elimination of outliers/concept drift using activities in the SOM layer
only, shown for the three datasets used in this study. The goal is to exclude
the class that was not used during the training phase, thus modeling the effects
of abrupt concept drift. As can be expected, MNIST as the cleanest dataset
performs best here.

0 for MNIST, the ”background” class for pedestrian detec-
tion and the ”left” class for pose classification) is excluded
from training. At t > Tincr, the previously excluded class is
exclusively presented whereas adaptation in the network is
disabled by setting ε∞ = 0, εLR = 0 and τ = 0. It is assumed
that outlier samples generate less BMU activity that inliers,
therefore a threshold θout is applied to BMU activities and a
sample is labelled as an outlier z~y∗ < θout. By varying θout in
the [0, 1] interval, graphs reminiscent of ROCs can be obtained
that indicate how effective this strategy is at detecting outliers
while letting pass inliers. These results are depicted, for the
three datasets, in Fig. 7.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12

cl
as

si
fic

at
io

n
ra

te
 o

n
al

l c
la

ss
es

iterations /1000

threshold=0.8
threshold=0

Fig. 8. Effect of the threshold θ during incremental learning. Shown is
classification performance on the test set of the pose classification task during
incremental learning of the left-out ”left” class with θ = 0.8 (red curve) and
θ = 0 (green curve). Results clearly show that thresholding ”protects” the
readout layer against concept drift effects.

H. Concept drift detection for controlling readout

An interesting finding is that the readout layer can be
strongly ”damaged” by the advent of concept drift of the
hidden SOM layer H is not managed appropriately. The
addition of a class the SOM layer was not trained on will,
in general, cause diffuse, low-level activity in the SOM. The
readout mechanism will however try to map this essentially
random activity to the new class label, therefore destroying
readout weights all over the internal SOM layer. This is
the reason behind the introduction of the threshold theta in
eqn.(6): it will suppress random activities until such a time
as the SOM has partially converged on the new class, which
is indicated by super-threshold SOM activity. We show this
effect exemplarily for the pedestrian pose classification task
(the behavior is exactly the same for all three datasets) in
Fig. 8. Using the settings of Sec. III-C except a smaller hidden
layer size of nH = 10, we train the PROPRe architecture on
all classes but the ”left” class until Tincr. Subsequently, we add
the ”left” class, one time with θ = 0.8 and another time using
θ = 0. In parallel, we monitor the classification performance
on the test (in which all classes are present) set every 1000
iterations. Results can be observed in Fig. 8.

I. Adaptive control of SOM parameters

As the focus of this article is on incremental learning
scenarios where a new class is abruptly introduced, it is
important to ensure the continued topological organization of
the internal SOM layer H. As explained in Sec. II-A, the SOM
neighbourhood radius is reduced from initially large values to
an asymptotic value. As seen in Sec. III-F, this value needs
to be small in order to ensure good classification performance
of the whole architecture. Therefore, adding a new class using
a very small neighbourhood radius may conceivably introduce
strong topological defects, breaking the assumption that close-
by prototypes are close in data space as well. As this is the
fundamental principle on which we build incremental learning
on top of the SOM model, the formation of topological defects
must be avoided by appropriate mechanism. A simple way
is to simply increase the neighbourhood radius temporarily
when a new class is presented, and smoothly reducing it to
its asymptotic value over time. sec:exp:detect In order to test
whether this approach is necessary and, if so, feasible, we
conduct a simple experiment using the MNIST benchmark:
training is conducted normally (see Sec. III-C) with a hidden

SOM layer size of nH = 10 using all classes except the class 0.
In contrast to Sec. III-C, we use parameter values of θm = 0.1
to accelerate incremental learning and Tincr = 200000 to speed
up the experiments. At t = Tincr, the class 0 is presented
exclusively for 15.000 iterations. The experiment is conducted
twice, one time with an initially high neighbourhood radius
of σ = 1.5 that is exponentially decayed to its asymptotic
value of σ∞ = 0.01, and one time with σ = σ∞ throughout
the remaining experiment. The development of the topographic
error etop and a visualization of the prototype modifications are
given in Fig. 9.

IV. CONCLUSION

The basic message of this article is that SOMs are an
extremely useful tool for performing incremental learning if
appropriately managed. We presented the PROPRE architec-
ture for incremental learning in very high dimensions which
draws its incremental learning capacity from its internal SOM
layer, and showed that PROPRE’s basic classification ability
(without incremental learning) is close to the state-of-the-art on
several challenging real-world tasks. The internal SOM layer
exhibits localized and gradual update behavior as demonstrated
in Sec. III-D which avoids catastrophic forgetting, but can also
detect concept drift by BMU analysis (see Sec. III-G. Based on
this ability, we presented PROPRE’s mechanisms of control-
ling its SOM layer in order maintain topological organization
(see Sec. III-I) and stability in the face of sampling bias (see
Sec. III-E), and verified that they are necessary ingredients
when performing incremental learning with SOMs.

It is clear that incremental learning as performed here (first
train with P − 1 classes, then train with remaining class only)
would need to be complemented by a re-training phase where
all P classes are presented together in order to compensate
for SOM units that now respond to the newly added class, and
indeed it has been shown in [12] that this is a perfectly viable
strategy. Other incremental learning methods such as LWPR
who have adaptive model complexity can avoid such steps as
the addition of a new class does not impair the representation
of the ”old” ones as long as there is no overlap. Since we wish,
for reasons of real-world processing capacity, to have constant
model complexity, incremental learning becomes slightly more
complicated but, on the other hand, a fixed upper bound on
computational resources is guaranteed with our approach.

Future work will, first of all, to automate the incremental
learning step: for now, parameters are set appropriately (high
θ, namely) because the onset of concept drift is known in
advance. A mechanism will have to be devised that uses
the concept drift detection mechanism shown in Sec. III-G
and sets internal parameters automatically, thereby removing
the need to tune these parameters by hand. Furthermore,
incremental learning scenarios which are less radical than the
one considered here are of interest, e.g., when an unknown,
new class comes interspersed with samples of known classes.
In this case, concept drift can neither be detected not being
adapted to because misclassifications will occur only rarely.
The introduction of a short-term storage system for misclassi-
fied samples as introduced in [12] might be a fruitful approach
here which will be pursued in future works.

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 200000 202000 204000 206000 208000 210000 212000 214000 216000

to
po

gr
ap

hi
c

er
ro

r

iteration

topographic error
topology preservation

no topology preservation

Fig. 9. Left: topographic error etop over time when adding a new class, depending on whether SOM topology is ”protected” or not. Middle: prototype changes
at t = 215.000 w.r.t. t = 200.000, no topology preservation. Right: same diagram only this time with topology preservation. We observe that transition in
the latter case is smoother and no structural defects are introduced, which is further corroborated by the consistently lower etop. The price is of course the
”overwriting” of a larger area of the original SOM layer.

REFERENCES

[1] A Gepperth and B Hammer. Incremental learning algorithms and
applications. In European Sympoisum on Artificial Neural Networks
(ESANN), 2016.

[2] Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental
online learning in high dimensions. Neural computation, 17(12):2602–
2634, 2005.

[3] R.J. May, H.R. Maier, and G.C. Dandy. Data splitting for artificial
neural networks using som-based stratified sampling. Neural Networks,
23(2):283 – 294, 2010.

[4] M. McCloskey and N. Cohen. Catastrophic interference in connectionist
networks: the sequential learning problem. In G. H. Bower, editor, The
psychology of learning and motivation, volume 24. 1989.

[5] R. Ratcliff. Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychological Review,
97, 1990.

[6] RM French. Semi-distributed representations and catastrophic forgetting
in connectionist networks. Connect. Sci., 4, 1992.

[7] RM French. Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychol Rev., 97(2), 1990.

[8] McCloskey M and Cohen NJ. Catastrophic interference in connectionist
networks: the sequential learning problem. Psychol. Learn. Motiv., 24,
1989.

[9] Pallavi Kulkarni and Roshani Ade. Incremental learning from un-
balanced data with concept class, concept drift and missing features:
a review. International Journal of Data Mining and Knowledge
Management Process, 4(6), 2014.

[10] Alexey Tsymbal. The problem of concept drift: definitions and related
work. Technical report, Computer Science Department, Trinity College
Dublin, 2004.

[11] Tom M Heskes and Bert Kappen. Error potentials for self-organization.
In Neural Networks, 1993., IEEE International Conference on, pages
1219–1223. IEEE, 1993.

[12] A Gepperth and C Karaoguz. A bio-inspired incremental learning
architecture for applied perceptual problems. Cognitive Computation,
pages 1–11, 2016.

[13] A Gepperth and M Lefort. Biologically inspired incremental learning
for high-dimensional spaces. In IEEE International Conference on
Development and Learning (ICDL), 2015.

[14] Y. M. Wen and B. L. Lu. Incremental learning of support vector
machines by classifier combining. In Proc. of 11th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2007),
volume 4426 of LNCS, 2007.

[15] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar.
Learn++: An incremental learning algorithm for supervised neural
networks. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 31(4):497–508, 2001.

[16] N. Sharkey and A. Sharkey. An analysis of catastrophic interference.
Connection Science, 7(3-4), 1995.

[17] R. M. French. Dynamically constraining connectionist networks to
produce distributed, orthogonal representations to reduce catastrophic
interference. In Proceedings of the Sixteenth Annual Conference of the
Cognitive Science Society. 1994.

[18] J. Murre. The effects of pattern presentation on interference in back-
propagation networks. In Proceedings of the 14th Annual Conference
of the Cognitive Science Society. 1992.

[19] R. M. French. Semi-distributed representations and catastrophic forget-
ting in connectionist networks. Connection Science, 4, 1992.

[20] C. Kortge. Episodic memory in connectionist networks. In Proceedings
of the 12th Annual Conference of the Cognitive Science Society. 1990.

[21] Ian J Goodfellow, Mehdi Mirza, Xia Da, Aaron Courville, and Yoshua
Bengio. An empirical investigation of catastrophic forgeting in gradient-
based neural networks. arXiv preprint arXiv:1312.6211.

[22] J. Krushke. ALCOVE: An exemplar-based model of category learning.
Psychological Review, 99, 1992.

[23] S. Sloman and D. Rumelhart. Reducing interference in distributed
memories through episodic gating. In A. Healy and S. Kosslynand R.
Shiffrin, editors, Essays in Honor of W. K. Estes. 1992.

[24] S. Vijayakumar and S. Schaal. Locally weighted projection regres-
sion: An o(n) algorithm for incremental real time learning in high-
dimensional spaces. In International Conference on Machine Learning,
2000.

[25] D. Nguyen-Tuong and J. Peters. Local gaussian processes regression
for real-time model-based robot control. In IEEE/RSJ International
Conference on Intelligent Robot Systems, 2008.

[26] O. Sigaud, C. Sagan, and V. Padois. On-line regression algorithms
for learning mechanical models of robots: A survey. Robotics and
Autonomous Systems, 2011.

[27] M. Butz, D. Goldberg, and P. Lanzi. Computational complexity of the
xcs classifier system. Foundations of Learning Classifier Systems, 51,
2005.

[28] T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer. Incremental local
online gaussian mixture regression for imitation learning of multiple
tasks. 2010.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In S. Haykin and B. Kosko, editors,
Intelligent Signal Processing, pages 306–351. IEEE Press.

[30] M. Enzweiler and D.M. Gavrila. Monocular pedestrian detection:
Survey and experiments. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(12):2179–2195, 2009.

[31] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 886–
893. IEEE, 2005.

[32] Daniel Polani. Measures for the organization of self-organizing maps.
In Self-Organizing neural networks, pages 13–44. Springer, 2002.

